
@crichardson

Migrating a monolith to
microservices? A dark energy,

dark matter perspective
Chris Richardson

Founder of Eventuate.io

Founder of the original CloudFoundry.com

Author of POJOs in Action and Microservices Patterns

 @crichardson

chris@chrisrichardson.net

adopt.microservices.io

Copyright © 2022. Chris Richardson Consulting, Inc. All rights reserved

@crichardsonCOVID
-19https://www.ft.com/content/f9356bdc-3102-11ea-a329-0bcf87a328f2

https://www.ft.com/content/3f498e64-1aa6-11ea-97df-cc63de1d73f4

https://techcrunch.com/2019/06/18/the-rise-of-the-gig-economy-helps-london-based-insurtech-zego-to-raise-42m/

Thriving in today’s world

Businesses must be nimble, agile and innovate faster

Volatile

Uncertain

Complex

Ambiguous

@crichardson

Software is eating the world

Business critical

application

 You must deliver software rapidly,
frequently, reliably and sustainably

You
Responsible for

S/W VUCA

@crichardson

Goal Your realityMeasured by DORA metrics

+ your m
onolith

’s technology stack

is out of date

@crichardson

Adopting the microservice
architecture will make
everything wonderful,

right?

Hint: it won’t

@crichardson

Presentation goal

 Using the

dark energy and dark matter forces

to decide whether to refactor a

monolith to microservices

@crichardson

About Chris

http://adopt.microservices.io

Late 80s 2006 2008 2009

2012-

@crichardson

Agenda

Architecting for modern software delivery

Dark energy and dark matter: forces that drive the architecture

Dark energy: encouraging decomposition

Dark matter: resisting decomposition

@crichardsonCOVID
-19https://www.ft.com/content/f9356bdc-3102-11ea-a329-0bcf87a328f2

https://www.ft.com/content/3f498e64-1aa6-11ea-97df-cc63de1d73f4

https://techcrunch.com/2019/06/18/the-rise-of-the-gig-economy-helps-london-based-insurtech-zego-to-raise-42m/

The success triangle
Process: DevOps/Continuous Delivery & Deployment

Organization:

Network of small,

loosely coupled, product teams

 IT must deliver software

rapidly, frequently, reliably and sustainably.

Measured by the DORA metrics

Businesses must be
nimble, agile and

innovate faster

S/W VUCA

Architecture:

???Supports

Supports

Required architectural quality
attributes (.a.k.a. -ilities)

DevOps

Autonomous Teams

Long-lived applications

Testability

Deployability

Loose coupling

Evolvability

Enable incremental upgrades of technology stack

@crichardson

Make the most of the monolith

Process: adopt DevOps and automate

Organization:

Restructure and increase

autonomy

Monolithic architecture:

Modularize and modernize

Success triangle

@crichardson

If and only if that is
insufficient* then consider
migrating to microservices

*Large, complex applications developed by a
(usually) large team that need to be delivered

rapidly, frequently, and reliably

@crichardson

On the other hand:

Improving the monolith can
take a while

THEREFORE
Implement urgent new

features as services now

@crichardson

Strangler Fig Pattern: Incrementally
refactoring a monolith to services

Monolith

Time

Monolith

Service

Monolith

Service

Service

Monolith

Service

Service

Service

Service

…. Monolith

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

….

Strangler application

The strangler application grows larger over time

The monolith shrinks over time

Service

Service

Service

Service

Service

Service

Service

Service

New
features

Stop/resume
at any point

When should you migrate?

And, which parts?

@crichardson

Agenda

Architecting for modern software delivery

Dark energy and dark matter: forces that drive the architecture

Dark energy: encouraging decomposition

Dark matter: resisting decomposition

@crichardson

How to define an
Architecture…

Application
≪subdomain≫

Customer
management

≪aggregate≫

Customer

≪subdomain≫

Order
management

≪aggregate≫

Order

createCustomer()
createOrder()

findOrder()
findOrderHistory()

System operations
Distill

Requirements The “requests” that the
application implements

Have SLOs

Customer Team

Order Team

About Subdomains

• Business capability/function/etc

• Logical view: packages and classes

• Team-sized

• Loosely coupled (Conways law)

1

2

Functional requirements

As a consumer
I want to place an Order
So that I can ….

As a Restaurant
I want to accept an Order
So that I can ….

Event storming

Wireframe/UI mockups

Available
Restaurants

Restaurant
Menu

System quality attributes

• SLA: Reliability/Latency
• Scalability
• …

@crichardson

Kitchen ServiceDelivery Service

Order ServicecreateOrder()

… how to define an Architecture

createOrder()

<<subdomain>>

Order Management

Order

System operations

<<subdomain>>

Order

Management

<<subdomain>>

Kitchen

Management

<<subdomain>>

Delivery

Management

<<subdomain>>

Courier

Management

Group

subdomains
into services

Application

Collaboration

Design
collaborations
for distributed

operations

createOrder()

3

Monolith or
Microservices

@crichardson

Grouping subdomains into
components: together or separate?

≪subdomain≫

Customer
≪aggregate≫

Customer

≪subdomain≫

Order
≪aggregate≫

Order

AttractionRepulsion

Simple components

Team-sized services

Fast deployment pipeline

…

Dark energy: an anti-
gravity that’s accelerating

the expansion of the
universe

Dark matter: an invisible
matter that has a

gravitational effect on stars
and galaxies.

https://www.nasa.gov/feature/goddard/2020/new-hubble-data-explains-missing-dark-matter

Simple, efficient interactions

Prefer ACID over BASE

Minimize runtime coupling

…

https://chrisrichardson.net/post/microservices/2021/04/15/mucon-2021-dark-energy-dark-matter.html

Generate

systemOperation()

@crichardson

Together or separate = Module vs. Service?

FTGO Monolith

Delivery

Service

FTGO Monolith

Delivery

Management

createOrder()

VS

createOrder()

Collaboration

Order

Management

…

Management

Order

Management

…

Management

Dark

Energy

Dark

Matter

Benefits
Cost & Feasibility

@crichardson

Agenda

Architecting for modern software delivery

Dark energy and dark matter: forces that drive the architecture

Dark energy: encouraging decomposition

Dark matter: resisting decomposition

@crichardson

Repulsive forces ⇒ subdomains
in different services

https://chrisrichardson.net/post/microservices/2021/04/15/mucon-2021-dark-energy-dark-matter.html

= reasons to migrate a module into a service

ServiceService

«Subdomain» A

«Aggregate»
X

«Subdomain» B

«Aggregate»
Y

Simple components
Team autonomy

Fast deployment pipeline
Support multiple technology stacks

Segregate by characteristics

Repulsive dark energy forces

@crichardson

Simpler components/services

ServiceService
Service

Subdomain
A

Subdomain
A

Subdomain
B

Subdomain
B

More complex service Simpler services: easier to
understand, develop, test, …

versus

Simplifying a monolith
Modularizing the monolith
helps reduce complexity

Developer can focus on their
module

BUT

Complexity ∝ Size

Github Repository
«Gradle Project»

FtgoApplication

«Gradle Subproject»

main

main

«Gradle Subproject»

orders

orders.web

«Gradle Subproject»

customerAPI

orders.
domain

«Gradle Subproject»

customers

customers.
persistence

orders.
persistence

Customer team

Order team

customers.
domain

customers.
web

customers.
api

Module/New Feature → Service = simpler development

IF

• Module is actively being developed

• Monolith is large

@crichardson

Team autonomy = service per team

ServiceService
Service

Subdomain
A

Subdomain
A

Subdomain
B

Subdomain
B

Coordination required Build, test and deploy
independently

vs.

Team A Team B Team A Team B

Monoliths and team autonomy

Modularization helps

BUT

Single code base

Autonomy ∝ 1/ # developers

Github Repository
«Gradle Project»

FtgoApplication

«Gradle Subproject»

main

main

«Gradle Subproject»

orders

orders.web

«Gradle Subproject»

customerAPI

orders.
domain

«Gradle Subproject»

customers

customers.
persistence

orders.
persistence

Deployment
pipeline

Production

FTGO
Application

Executable JAR

customers.
domain

customers.
web

customers.
api

Module/New Feature → Service = increased autonomy

IF

• Module is actively being developed

• Many teams

@crichardson

Fast deployment pipeline

@mipsytipsy

https://speakerdeck.com/charity/cd?slide=17

Service

Subdomain

Subdomain

Service

Subdomain

Shorter
lead time

Simpler
build

Longer lead
time

More complex
build*

* Parallelizing building/testing partially helps

Service

Subdomain

vs.

@crichardson

Optimizing a monolith’s deployment pipeline

$ git pull

$./gradlew test

$ git push

! [rejected] ….

Use merge queue
Accelerate build/test:

• Incremental testing through DIP and ISP

• Parallelization/clustered builds

• Selective test execution

BUT if the application/team keeps growing

Then eventually the deployment pipeline = bottleneck

Module/New Feature → Service = faster deployment pipeline

IF

• Module is actively being developed

• Monolith is large

• Many teams

@crichardson

Support multiple technology
stacks

Service

Python

Service

Java

Service

JVM

Subdomain
A

Subdomain
A

Subdomain
B

Subdomain
B

Single technology stack

Upgrade together

Separate technology stacks

Right tool for the job

Upgrade independently

Experiment easily

versus

@crichardson

Monolith = single technology
stack

Single class path unless using exotic technology, eg. Layrry

Single version of each dependency => big bang upgrades

No opportunity to experiment

No possibility of using non-JVM technologies, e.g. Python

Module/New Feature → Service = multiple technology stacks

@crichardson

Separate subdomains by
characteristics

Subdomain characteristic Issue

Resource requirements Cost-effective, scalability

Regulations, e.g. SaMD/
PCI DevOps vs. Slower regulated process

Business criticality/tier Maximize availability

Security, e.g. PII, … Improve security

DDD core/supporting/
generic Focus on being competitive

@crichardson

Cost effective scaling

ServiceServiceService

Subdomain
A

Subdomain
A

Subdomain
B

Subdomain
Bversus

CPU MEM GPU

Scale together

• Wasteful

• Costly

CPU MEM GPU

Scale separately

• Efficient

• Cheaper

Load Load Load Load

EC2: p4d.24xlarge EC2: p4d.24xlargeEC2: m5.24xlarge

8x cost!

@crichardson

Example: Segregate by business criticality

ServiceService
Service

Payment
Processing

Payment
Processing

Merchant
management

Merchant
management

Shared infrastructure

Shared code base

Risk of interference

Separate infrastructure

Separate code base

Isolated

vs.

chargeCard()

2.9% + 30c/
request Revenue loss and penalties

chargeCard()

Critical

Important

@crichardson

Multiple “deployments” can address
some requirements

FTGO
Monolith

FTGO
Monolith

Router

chargeCard()

….()
SPRING_PROFILES_ACTIVE=….

SPRING_PROFILES_ACTIVE=….

Request

BUT not others:

• single code base

• ….

• Scalability

• Availability

• …

Module/New Feature → Service

=

Improves architecture via separation

@crichardson

Some parts of your monolith will
benefit more from microservices

e.g. actively being developed

=>

Using dark energy to identify
candidate services

@crichardson

Data science team

(Not “hardcore” devs)

ML-based 
Fraud detection

Service

E-Commerce
Monolith

Develops

Faster deployment
pipeline Python

technology stack

Simplified development
experience

Improved autonomy

@crichardson

Agenda

Architecting for modern software delivery

Dark energy and dark matter: forces that drive the architecture

Dark energy: encouraging decomposition

Dark matter: resisting decomposition

@crichardson

Attractive forces ⇒
subdomains in same service

https://chrisrichardson.net/post/microservices/2021/04/15/mucon-2021-dark-energy-dark-matter.html

Subdomain A

«Aggregate»
X

Subdomain B

«Aggregate»
Y

Service A Service B

Simple interactions
Efficient interactions

Prefer ACID over BASE
Minimize runtime coupling

Minimize design time coupling

Generates

SystemOperation()

Collaboration

@crichardson

Simple interactions

Create

Order()

Service

Subdomain
A

Subdomain
B

Service BService A

Subdomain
A

Subdomain
B

Create

Order()

Complex distributed
operation

Simple local operation: easier
to understand, troubleshoot, …

vs.

@crichardson

Impact of extracting services on complexity

FTGO Monolith

Delivery

Service

FTGO Monolith

Delivery

Management

createOrder()

…

createOrder()

…

Collaboration

Order

Management

…

Management

Order

Management

…

Management

Might increase
complexity

@crichardson

Efficient interactions

Create

Order()

Service

Subdomain
A

Subdomain
B

Service BService A

Subdomain
A

Subdomain
B

Create

Order()

Network latency, limited
bandwidth In-memory, fast!

vs.

Must satisfy
SLOs

@crichardson

Impact of extracting services on efficiency

FTGO Monolith

Delivery

Service

FTGO Monolith

Delivery

Management

createOrder()

…

createOrder()

…

Collaboration

Order

Management

…

Management

Order

Management

…

Management

Might be too
inefficient

@crichardson

Prefer ACID over BASE

System

Operation()

Service

Subdomain
A

Subdomain
B

Service BService A

Subdomain
A

Subdomain
B

System

Operation()

Distributed, eventually
consistent transaction Simple, Local ACID transaction

vs.

ACID txn ACID txn
ACID txn

@crichardson

Impact of extracting services on transactions

FTGO Monolith

Delivery

Service

FTGO Monolith

Delivery

Management

createOrder()

…

createOrder()

…

Saga

Order

Management

…

Management

Order

Management

…

Management

Might need
compensating

transactions = complex
changes to monolith

1. createOrder() 2. createDelivery()

FAILS2. rejectOrder()

@crichardson

Minimize runtime coupling

System

Operation()

Service

Subdomain
A

Subdomain
B

Service BService A

Subdomain
A

Subdomain
B

System

Operation()

Risk of runtime coupling No runtime coupling: higher
availability, lower latency

vs.

Must satisfy
SLOs

@crichardson

Impact of extracting services on runtime
coupling

FTGO Monolith

Delivery

Service

FTGO Monolith

Delivery

Management

createOrder()

…

createOrder()

…

Collaboration

Order

Management

…

Management

Order

Management

…

Management

Might have
excessive runtime

coupling

@crichardson

Minimize design time coupling

Order
Subdomain

Customer
Subdomain

reserveCredit()

createOrder()

Customer

Order

Design-time coupling

Minimize with careful design

BUT

You can’t always eliminate it

⇒

Risk of lock step changes

API Risk proportional to:

• API instability

• API complexity

• …

@crichardson

Impact of extracting services
on design-time coupling

Monolith and new service might have excessive design-time
coupling

BUT

Experience with monolith = domain expertise = MonolithFirst

Increases likelihood of designing services with stable API

Reduced risk of accidentally creating design-time coupled
services

@crichardson

Consequences of dark matter forces

FTGO
Monolith

Delivery

Service

FTGO
Monolith

Delivery

Management

createOrder()

…

createOrder()

…

Collaboration

Order

Management

…

Management

Order

Management

…

Management

Might not resolve dark matter forces:

Infeasible architecturePrefer ACID over BASE:

Might need expensive to
implement compensating
transactions in monolith

@crichardson

Summary
Don’t automatically assume you need microservices:

Make the most of your monolith

Improve your process and organization

BUT

An application/organization can outgrow its monolithic architecture

THEREFORE

Incrementally refactor to microservices

Dark energy forces help identify candidate services

Dark matter forces can make extracting a service infeasible or expensive

https://www.nasa.gov/feature/goddard/2019/nasa-s-james-webb-space-telescope-has-been-assembled-for-the-first-time

Process

Organization Architecture

@crichardson

@crichardson chris@chrisrichardson.net

adopt.microservices.io

Questions?

mailto:chris.richardson@springsource.com

