Vagif Abilov

Reliable Messaging in the World of Actors

Vagif Abilov
Consultant in Miles
Oslo, Norway

Work with F# and C#

@ooobject
vagif.abilov@mail.com

mailto:vagif.abilov@mail.com

Our product

KTV

: Mlt‘p
WAL

e Tl v

PR R 8

== = e m W/Q'I

Our architecture at large

Durable

queues
(events)

o

A

Transport

Our technical stack

* Actor model (using Akka.NET cluster)

*F# as the main programming language

*RabbitMQ and Azure Service Bus as durable queues
*Both SQL and NoSQL databases to store persistent data

This talk is a retrospective of changes in
our approach to message handling guarantee

How do we provide
message handling guarantee?

Semantics of delivery guarantees

* At-most-once delivery: each message handed to the system is
delivered once or not at all (i.e. messages may be lost)

* At-least-once delivery: each message handed to the system may
potentially be attempted to be delivered multiple times (i.e.
messages may be duplicated but not lost)

*Exactly-once delivery: for each message handed to the system
exactly one delivery is made to the recipient (i.e. the message can
neither be lost nor duplicated)

Message delivery rules in actor systems

* At-most-once delivery- all major actor system implementations
*Message ordering per sender-receive pair (e.g. Akka)

*Some systems may be configured to achieve at-least-once
delivery using infinite retries (Orleans)

Can we run a reilable system
with at-most-once message delivery?

Our architecture at large

Durable

queues
(events)

o

A

Transport

Message queue configuration

> Reject

Errors

dm.ps.subtitles.prod rabbit@malxodaramqO1.felles.ds > classic D DLX Pri all
dm.ps.subtitles.prod.errors rabbit@malxodaramq01.felles.ds) | classic D TTL DLX Pri all

dm.ps.subtitles.prod.rejected rabbit@malxodaramq01.felles.ds 2 | classic D Pri all

dm.ps.subtitles.prod.retries rabbit@malxodaramqo1.felles.ds > classic D TTL DLX Pri all

Version 1

Don’t pay the ferryman

.. until he gets you to the other side

Acknowleding queue messages

-

Ack/Nack message_tag

Acknowleding queue messages

Ack/Nack message_tag

NB! This is not a transactional semantics, this is at-least once delivery

Acknowleding queue messages

Ack/Nack message_tag

Return Address pattern

Requestor | A% q e | Replier

A

Requests

Requestar 2 Channel 1 Reply

Reply

Channel 2

Reply

lllustration from «Enterprise Integation Patterns» book by Gregor Hohpe & Bobby Woolf

Message envelope

Message Payload

Drawbacks of using queue acknowledgement
to acknowledge workflow completion

*Messages must be wrapped into envelopes that contain
acknowledgement Id

*Last actor in chain is responsible for ack but every actor in chain
can issue nack

* Actors in the middle of the chain must not issue ack

*Operations can be long running, queues may be configured with
TTL policies

*Message processing workflow can contain forks and joins

19

How long should a postman wait?

Version 2

Durable queues as persistent bookmarks

Durable queues for delivery guarantees

At-least-once At-least-once

Drawbacks of sending actor-to-actor messages
using message queues

*Messages must be wrapped into envelopes that contain
acknowledgement Id

*An actor system gets partitioned

*Some units of work may still be long running and exceed TTL
values configured for message queues

23

Again: how long should a postman wait?

Version 3

At-Least-Once Delivery
Akka extensions

Actors with at-least-one delivery semantics

*Based on persistent actors
*Messages include Deliveryld
*Each delivery requires confirmation from a recipient

*Behavior configuration
*Redelivery burst limit
*Warnings on unconfirmed delivery attempts
* Maximum unconfirmed messages

* After working with durable queues (RabbitMQ, Azure ServiceBus)
feels like poor man durable queues

26

Don’t implement at-least-once delivery semantics
using actors just to put actors everywhere
Use technology that is built for it
(durable message queues)

Version 4 (current)

It’s all about fulfillment of a Desired State

«Nobody Needs Reliable Messaging»

Marc de Graauw
https://www.infog.com/articles/no-reliable-messaging/

https://www.infoq.com/articles/no-reliable-messaging/

“Nobody Needs Reliable Messaging”

“If reliability is important on the business level,
do it on the business level”

Transactions and Fiefdoms

In a system that cannot count on distributed
transactions, the_mana%ement of uncertainty must
be implemented in the business logic

Pat Helland

https://pathelland.substack.com/p/autonomous-computing-short-version

31

https://pathelland.substack.com/p/autonomous-computing-short-version

Work happens with a sequence of related messages
over time to perform cooperative work. This is how it
was done centuries ago and it's how it's done today.

Pat Helland

https://pathelland.substack.com/p/autonomous-computing-short-version

32

https://pathelland.substack.com/p/autonomous-computing-short-version

Reliable collaborations with unreliable messages

Reliable collaborations with unreliable messages

1. Receive an incoming request

2. Evaluate the desired state of your aggregate root

* Desired state must include information about expected outgoing
messages (use Outbox pattern)

3. Persist the desired state
4. Acknowledge the received message
5. Proceed with the request execution

34

Outbox pattern

Outbox Pattern ensures that the application state
(stored in the application database) and its
respective domain event (forwarded to the

external consumers) are consistent and durable
under a single transaction

35

Request execution

1. Evaluate the desired state
2. Evaluate the current state
3. Work = Current state — Desired state

36

Desired state concept

*One of the core concepts of Kubernetes
*You describe the state of the objects that will run the containers
*Kubernetes are in charge of regulating the state of the system

*PowerShell Desired State Configuration is a configuration
management platform
*Decrease the complexity of scripting
*Increase the speed of iteration

37

Important assumption: idempotency

38

- state: {
- desired: {
+ mediaMode Legacy: |
+iaccessRestrictions: { .
- content: [

-1

partId: "mdre3@eelc2eca”,
partNumber: 1,
- files: [
qualityId: 4933%0@,
fileName: "mdre30@01620ca_2200000000000000072580 4939908, mp4™,
sourcePath: " elles.ds.nrk.no\nrk\produksjonsdata\odadistribusjon\MDRE3@\@@\MDRE32001620 \MDRE300G1628CA_0200000000000000072580
- mediaPropertiesv2: [
-1
bitRate: 4989320,
duration: "PT31M3.445",
video: {
dynamicRangeProfile:
displayAspectRatio:
width: 1%2a,
height: 1@sa,
frameRate: 25
¥
audio: {
mixdown: 2
I
version: 72580

qualityId: 656004,
fileName: "mdre30@01620ca_2200000000000000072580 656080.mp4™,
sourcePath: "\\

elles.ds.nrk.no\nrk\produksjonsdata\odadistribusjon\MDRE3@\@@\MDRE30001620\MDRE300G1620CA_0000000000000000072580
- mediaPropertiesv2: [

-1

bitRate: 656202,

duration: "PT31M3.445",

video: {
dynamicRangeProfile:
displayAspectRatio:
width: &4a,
height: 28@,
frameRate: 25

¥

audio: {
mixdown: 1

I

version: 72530

current: {
- akamaiStorage: {
volumeId: "13",
edgeChar: "c”,
timestamp: "2021-83-82T18:88:34.88357644+01:08"
b
- akamaiFiles: [
-1
partId: "mdre3@@1628ca”,
qualityId: 2esees,
file: {
sourcePath: manas@l\odadistribusjon$\MDRE3@\@0\MDRE3E0E1622\MDRE3GEA1626CA_0000000000000000872580_ID188.mp4",
directoryPath: "mdre3e001628~mdre3@001620ca",
cdnPath: "http://nordondl3c-f.akamaihd.net/z/no/open/ps/md/ mdrel8d81626/mdre38881628ca,/mdre38881628ca_205088 .mpd",
version: 72580

ka

state: 5,

lastResult: {
removed_ResultCode: @,

resultCode: 2
,
s

timestamp: "2021-11-23T@8:58:10.1554439+21:00"

partld: "mdre3@e@l628ca”,

qualityId: 381068,

file: {
sourcePath: "\\manasel\odadistribusjon$\MDRE32\0@\MDREZEEE1622\MDRE30EO1620CA_0O20200002200000072580_ID270.mp4",
directoryPath: "mdre3@08162@~mdre30081628ca”,
cdnPath: "http://nordondl3c-f.skamaihd.net/z/no/open/ps/md/mdre30081620,/ mdre3@@@l620ca/ mdre30801628ca_ 381888 .mpd",
version: 72588

1

I

state: 5,

lastResult: {
removed_ResultCode: &,
resultCode: @

1

I

timestamp: "2821-11-23T08:58:11.7731315+@1:

But actors are reactive
How do they ensure all work is fulfilled?
What wakes them up on a system crash?

o B W N B

Extending processing workflow

Receive an incoming request
Evaluate the desired state

Schedule a repeating reminder
Persist the desired state
Acknowledge the received message
Proceed with the request execution

43

Reminder message may be simply
a trigger to wake up the actor

4t

What was | supposed to do today?

= . e

| ™ T o B

™ . = - *
, o - -~ -
v - -«'.. . . - - ™ % i
1 i 0
) ¥ . ! 'Y N
. - a
~ B : -
) : \-‘

45

When an aggregate root actor wakes up

1. Replay actor state from the event journal (state recovery)
2. Evaluate remaining work (Current state — Desired state)
3. Remaining work = Nothing?

*Yes -> Cancel the repeating reminder

*No -> Proceed with the request execution

A

Main lesson learned when modeling actors’ behavior

Consider using patterns
established in real world collaborations

The real world is solid

47

Rant about workflow engines and saga managers

You don’t need them

Check out talk «Events, Workflows, Sagas?» by Lutz Huenhnken at kanDDDinsky.de

48

Conclusion

* Actors use at-most-once delivery for good reasons, let them stay
quick and responsive

*Don't use durable message queues as transaction guards
* Acknowledge messages on receiving, not on completion of the
request they imply

*Persist the intention and record the triggered operations
outcome, these form Desired and Current state, then you can
always evaluate the remaining work

49

Thank you!

Vagif Abilov
Consultant in Miles

Github: object
Twitter: @ooobject
vagif.abilov@mail.com

mailto:vagif.abilov@mail.com

