
Go Faster, Be Safer
Release Velocity and Psychological Safety

Munnawar Hashim
Developer Advocate
LaunchDarkly
 Twitter: @munnawar_h

Why do we test
changes?

Starting off with a big question…

Outages are costly
A failed deployment can have a
cascading effect on platforms and
customers.

Failures Damage Perceptions
Unstable environments get a
reputation. People stop trusting your
products and tools - and adoption
slows.

Fear of
Failure

Lack of Innovation
If we’re not testing constantly - are we not
innovating our platforms? Test environments give
us freedom to explore.

Slowed Pace
If our pace slows - do our competitors win? Do
our users look for more interesting or useful
products?

Fear of
Becoming
Stagnant

http://www.youtube.com/watch?v=9ul7fvdcIYI

Cultural Processes
“We always test in dev, then QA, and
then release to prod” is a common
phrase. It’s how we “learn” to develop.

Perception of Safety
Methodical test processes create the
perception of safer deployments, but at
what cost?

It’s how
we’ve always
done it

Testing IS a good thing.
It’s just about striking a

balance.

Moving Slowly !=
Deploying Safely

What if…?

Safety is shipping
frequently, with greater

control

Instead

Fast Safe
Shipping faster = faster iteration on
issues, faster resolution.

Moving away from waterfall releases -
trunk based development, nightly
builds/commit and ship

Adjust your needs quickly - accelerate
deployments to more groups/faster
*smush this in with point 1.

Problematic release? Rollback
immediately via killswitch.

Gate features behind targets, control
pace of rollout, and catch issues in
production before they go wide

Smaller changes with more predictable
impacts and fewer 2am outage calls

Collaborate across projects and
release activities

Integrate with common tooling, and
automate releases remove human error

http://www.youtube.com/watch?v=7aY6qI3IrtY

Fast Safe
Shipping faster = faster iteration on
issues, faster resolution.

Moving away from waterfall releases -
trunk based development, nightly
builds/commit and ship

Problematic release? Rollback
immediately via killswitch.

Gate features behind targets, control
pace of rollout, and catch issues in
production before they go wide.
Ensuring smaller changes with more
predictable impacts and fewer 2am
outage calls

Collaborate across projects and
release activities

Integrate with common tooling, and
automate releases remove human error

http://www.youtube.com/watch?v=8blgbpUdbBo

Fast Safe
Shipping faster = faster iteration on
issues, faster resolution.

Moving away from waterfall releases -
trunk based development, nightly
builds/commit and ship

Problematic release? Rollback
immediately via killswitch.

Gate features behind targets, control
pace of rollout, and catch issues in
production before they go wide.
Ensuring smaller changes with more
predictable impacts and fewer 2am
outage calls

Collaborate across projects and
release activities

Integrate with common tooling, and
automate releases remove human error

http://www.youtube.com/watch?v=7Q7BbkPjSxs

Instead of making fewer
bigger changes, move
faster by making many

smaller changes

Deployments no longer force
branching strategies

Deploy code with no release

Minimize blast radius of deployments

Deployment !=
Release

Rollbacks are turning off a
feature flag

Visibility and Control

Blameless

Mistakes happen. Don’t
shoot the messenger -
learn together instead.

Non-catastrophic

Smaller changes = smaller
bets. Continuously validate
decisions and adjust
course.

Stress Free

With safety, we focus on
delivering value instead of
averting disasters.

Ship smaller
changes, more

often

Use release to
course correct

without impacting
all users

Understand and
evaluate successful

releases

Ship small, ship often
Keeping continuous

Speed and safety can
coexist
Defining your blast radius

TLDR;

ՊJessicaCregg

Measure your impact
Code matters when it’s measured

If you want to release software
more often, make releasing

software less scary.

Munnawar Hashim
Developer Advocate
LaunchDarkly
 Twitter: @munnawar_h

