

Hannes Lowette

Build software like a bag of marbles,
not a castle of LEGO®

Disc la imer #1

Col laborat ion > coex istence!

Disc la imer #2

PSA

LEGO is a brand name

used as an adjective

there is no plural, ‘LEGOs’

What were we trying to solve?

Understanding the problem

What were we work ing on?

• Huge product

• Goal: managing IoT devices

• A lot of implementations
(= specific types of devices)

• 1 multi-tenant deployment

How did we ro l l?

• New device types all the time

• Most projects didn’t go live

• Code didn’t get removed because:
• Tightly coupled

• Reused by other devices

• Money had been invested

→Maintenance hell!

What f rustrated me about th is?

One of my most productive days was
throwing away 1,000 lines of code.

Ken Thompson

Product management

• Not ready to change

• New devices would keep coming

• They expected us to keep the code

What the dev team wanted

• Implement new devices quickly

• Be able to remove them easily

• Limit dependencies between devices

• Clean abstractions

→ Stop Pollution!

So, microserv ices , r ight?

Steps in our evolutions as developers

The OO path to success

Step 1 : Demoware

Step 2 : Layers

Step 3 : “SOLID”

Step 4 : SOLID

SOLID – A model for OO development

Step 5 : Deployment models

• Plugins (in this talk)

• SOA

• Bus systems

• Microservices

• …

What decisions did we make?

The problem - revisited

So, microserv ices , r ight?

WRONG!

Step 3 : “SOLID”

The first rule of distributed software is:
DON’T DISTRIBUTE!

- Martin Fowler

Never solve a code problem
by introducing a deployment problem!

- Me

Chal lenges

When adding a new device:

• Add controllers to ASP.NET application

• Extend API calls with derived types
→ extend the central DbContext

• Extend Logic in central API

• Handle DB Migrations

What happened

• We picked: Plugins (in process)

• We built a successful POC

• We started doing this

SOLID-enabled solution architecture

Onion Architecture

Onion Archi tecture

• Jeffrey Palermo in 2008

• Also known as:
• ‘ports and adapters’

• ‘hexagon architecture’

• ‘clean architecture’

• Focus on:
• Clean dependencies

• Shielding abstractions

• Testable business logic

Onion - Concepts

• References can only go ‘in’

• The Core: reference free!

• Infrastructure for integrations:
• The DB & ORM

• File access & logging

• External API calls

• Libraries & packages!

Onion - Concepts

Benefits:

• No leaky dependencies

• Dependencies replaceable

• Reusable Core

• Forces you to write an interface first!
(interface owned by the consumer)

Onion – Test ing

Easy to:

• Test all individual components

• Determine the type of tests

• Define dependencies

• Mock dependencies

Example: ser v ice locator

1. Define interface(s):
What do I need from a DI container?

2. Work smart:
Is there a package that fits this?

3. Write an implementation
Use it to implement the interface.

Integrat ions

The resulting integrations:

• Don’t leak into your Core domain

• Easy to write

• Easy to test

• Easy to replace

What do we expect from a plugin?

Plugins

Plug in = assembly

• Easy to develop

• Extends our Core seamlessly

• Enable = ‘add the assemblies’

• Disable = ‘remove the assemblies’

• No references to the plugin from the Core!

Plug in ru les

• Can only reference the Core

• Should follow some conventions

• Can be deployed with the application

• Don’t break anything when removed

Enough chit-chat, show us some code!

Implementation

Our example

What wi l l we d iscuss?

1. DI Container

2. ASP.NET controllers & views

3. JSON inheritance

4. Logic extension points

5. Extending Entity Framework

6. Migrations

Deal ing with DI

• Scan assemblies at startup

• Use reflection

• Find our type registrar in each one

• Run the type registrars

IMPORTANT for development:

• .CSPROJ: copy in ‘post build actions’ (requires manual build)

• Make a development assembly with references

ASP.NET

• Controllers:
Use the application part manager to add them

• Views:
Add the Views DLL (standard output in recent ASP.NET Core)
using CompiledRazorAssemblyPart

• Pre-Core ASP.NET MVC:
Custom Controller Selector & View Selector

Post ing inher i ted types

• Easy – XML:

• Hard – JSON:

JSON inher i tance – the r i sky so lut ion

• Registration

• Usage

→ Serious vulnerability if you have an object/dynamic property

JSON inher i tance – the proper so lut ion

JSON inher i tance – the proper so lut ion

• Registration

• Usage

Log ic extens ion po ints

1. Define generic interfaces

2. Implement them in the plugin

3. Usage:
• Scoped service locator

• Simply inject?

Ent i ty Framework

• Use OnModelCreating to feed the
DbContext new (inherited) types

• EF Core = only TPH inheritance

• EF adds a Discriminator where clause

Database Migrat ions

Central Approach Distributed approach

+ Can be generated
+ Easy to execute at deploy time

+ Every plugin has its own migrations
+ Database 100% in sync w/ plugins

- All tables/fields exist even if the
plugins are not loaded

- Will require you to deal with the
MigrationHistory table

- Trickier to code & test
- Requires runtime migrations

Centra l migrat ions : EF Core

• 1 Central Migrations project

• Easy to generate migrations!

• Uses service configuration of your startup project
BY DEFAULT

• Without all plugins loaded, the model won’t match!
• Generate migration scripts from the migrations

• Rename the migration history table before/after deploy

Distr ibuted migrat ions : F luentMigrator

• Every Plugin its own migrations

• Either:
• Run migrations at runtime

• Make a runner that loads the deployed plugins

• Migrations need to be hand-coded

• The FluentMigrator API is easy to learn

• No problems with the ModelState

Project Dependenc ies

Let’s wrap up this session!

Conclusion

Key takeaways

• Before anything else, structure your code

• Plugins aren’t too hard to do, especially in .NET Core

• Never solve a code problem by introducing a deployment problem!

• Don’t worry if you’re not at step 4, 5 or 8 yet.

FAQ

• Isn’t this a lot harder?

• Can the plugins be Onions by themselves?

• When should I do this?

When should I use p lug ins?

• If you need modular deployments
(for instance: paid features per customer)

• If you want to easily retire/replace features

• If you want to be able to test features (A/B)

• To make smaller build pipelines in a large product

And if your business OK’s the 10/100 rule …

Questions?

About me

Hannes Lowette
Head of Learning & Development at @Axxes_IT

• @hannes_lowette

• #20086521

Code samples and slides at :

https://github.com/Belenar/Axxes.ToyCollector

Entrepotkaai 10A,
2000 Antwerpen

Leonardo Da Vincilaan 9,
1930 Zaventem

T +32 3 23499.58
info@axxes.com

www.axxes.comOttergemsesteenweg Zuid 808
bus 300 , 9000 Gent

Thank you!

https://www.habausa.com/
http://technicopedia.com/
https://bricks.stackexchange.com/
https://tenor.com/
https://www.reddit.com/
https://pixabay.com/
https://martinfowler.com/
https://wastelessfuture.com/
https://me.me/
https://buildplease.com/

https://noisebreak.com/
https://www.theonion.com/
https://www.psychologicalscience.org/
http://www.gillsonions.com/
https://www.toyotaofplano.com/
https://imgflip.com/
https://www.asp.net/
https://www.amazon.com/
https://xkcd.com/
https://unsplash.com/

Images from

https://www.habausa.com/
http://technicopedia.com/
https://bricks.stackexchange.com/
https://tenor.com/
https://www.reddit.com/
https://pixabay.com/
https://martinfowler.com/
https://wastelessfuture.com/
https://me.me/
https://buildplease.com/
https://noisebreak.com/
https://www.theonion.com/
https://www.psychologicalscience.org/
http://www.gillsonions.com/
https://www.toyotaofplano.com/
https://imgflip.com/
https://www.asp.net/
https://www.amazon.com/
https://xkcd.com/
https://unsplash.com/

